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Abstract: Moderate facial selectivities am observed in additions of aIky1 radicah to me chiraI (cd) oleIin (2s)-2-terf- 
butyl-5cthoxycatbonylmethylene-l,~dioxolane-4-one 1. The following hydrogen abstraction from ttibutylsmnnanc 
proceeds with exce.IIent asymmetric stemocontrol, leadhtg to two of four possible diastemoisomers with high 
diastereometic excesses. Additions of chiral radicaIs obtained from (2R,5R)-5-aIkyl-5-bromo-1,3dioxolane-4-ones 
to ethyl acryhue show high asymmetric 1,3-induction. 

Part A: Radical Additions to the Chiral Alkme 1 

The formation of C-C-bonds by radical additions to alkenes is one of the most useful synthetical 
reactions in organic synthesis2. In recent years stereochemical conttol has played a dominant role in this 
field of investigations? Chiral 5-alkyl-2-tert-butyl-1,3-dioxolane-4-ones which are easily prepared from 
malic and lactic acid give high facial selectivities in cycloadditions.4 BIXKWITH described signiflcant 
stereoselectivity of (2S)-2-tert-butyl-5-methylene-1,3-dioxolane-4-one in radical additions.5 We now report 

on the addition of free radicals to (2S)-2-tert-butyl-5-ethoxycarbonylmethylene-1,3-dioxolane-4-one 1. 
The chiral olefin 1 shows some interesting features: a) The C-5 atom is bearing both an electron 

donor and an electron acceptor as geminal substituents. Olefins like this am defined as (c,d) olefms and 
radicals should be stabilized at this site according to VIEHE’S concept of captodative (c,d) substitution of 
alkenes6 Thus, the addition of an alkyl radical should occur at the C-6 atom with high regioselectivity 
generating a stabilized radical. b) The S-face of the olefin is sterlcally hindered by the bulky tert-butyl 

group. Therefore the attack of the alkyl radical should take place at the Re-side preferably. c) Both C-atoms 
of the double bond me prochiral centsus. Consequently, addition of free radicals to the olefm followed by 

abstraction of hydrogen using the tin hydride method leads to four possible products as shown in scheme 1. 

Table 1. Additions of Alkyl Radicals to Olefin 1. 

entry 

1 
2 
3 
4 
5 

R’ 

@-Ill 
ten-c4H9 
n-C4Hg 
C2H5 
CI-l3 

product ratio yield conversion 
4: 5: 6: 7 % % 

1.00 : 0.10 : 0.94 : 0.09 I34 100 
1.00 : 0.19 : 0.64 : 0.05 66 80 
1.00 : 0.10 : 0.90 : 0.04 79 90 
1.00 : 0.06 : 1.00 : 0.06 90 100 
1.00 : 0.22 : 0.77 : 0.11 66 70 

We investigated the addition of various alkyl radicals and in fact we obtained the four dia- 
stereoisomers 4,5,6 and 7 in all case~.~ The detailed results of the reactions are listed in table 1. 

The formation of the intemxdiates 2 and 3 by addition of alkyl radicals at C-6 takes place with low 
facial selectivity (1 J-induction). Consequently the radical intermediates are formed in nearly equal ratio.* 
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R = alkyl 

Et&C 

EtO& 

EtO& 

(2S,5S,BR)-4 (2ww+5 

Scheme 1. Addition of alkyl radicals to olefm 1 with following hydrogen abstraction 

Following hydrogen abstraction from tri- 
butylstannane leads to the diastereoisomers 4,5, 
6, and 7. The stereochemistry concerning 2-H 
and 5-H is cis for compound 4 and 6 and trans 
for 5 and 7. The relative configurations were 
assigned by NOE measumments.9 However, it 
WitS impossible to distinguish between 
compound 4 and 6 respectively 5 and 7 by NMR 
data. 

Assuming the mechanism shown in 
scheme 1 the diastereomeric excesses for alkyl 
addition and hydrogen abstraction are calculated 
(table 2). 

Table 2. Diastemomeric Excesses of Radical 

Additions and Hydrogen Abstractions. 

entry slkyladdition hydrogen abstraction 
2+4+5 3 +6+7 

1 3 82 83 
2 22 68 86 
3 5 82 92 
4 0 89 89 
5 13 64 75 

The hydrogen abstraction from tributylstamnme at C-5 proceeds with high stereochemical control, 
which is caused by the conformation of the radical intermediate. It is likely that the radical intermediate 
adopts a preferred conformation which directs the hydrogen abstraction from the &-side of the radical 
cenne. The high facial selectivity is not only controlled by a simple 1,2-asymmetric induction of the alkyl 
and the ester group. Furthermore the interaction of these substituents with the rerr-butyl group and the 
.%&cyclic carbonyl function generates a conformation which shields the Si-side. Therefore the hydrogen 
abstraction takes place from the &-side. This conclusion is based on semiempirical calculations. 

Part B: Additions of Chiral Radicals to Ethyl Acrylate 

The addition of alkenes to chiral five-membered ring radicals has been intensively studied concerning 
1,2 induction.lO We now describe this hind of reaction with respect to 1.3 induction. The syntheses of the 
bromides 8 and 12 have already been reported earlier *4a4c*11 These bromides are yielded as crystalline 
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solids with excellent diastereoisomeric excesses (> 96%).12*13 Both are useful precursors for the chiral 
radicals 9 and 13, which am generated by bromine abstraction using the tin hydride method (scheme 2). 

R Br 0 R 
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7-f 

O-\ 

k@H 7-f 

COOEt RGmEt Rw 

0’ 30 - 
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0. o- 
AIBN 

80 OC. benteIn? 

T BGaH x + 7 

(2R,5R) (25) (2S.5S) 

8, R=H 9. R=H (2S,5R)-10, R=H ll. R=H 

12, R=COOEt 13, R=COOEt (2S,SS)-14, R=COOEt 15, R=COOEt 

Scheme 2. Addition of chiral radicals to ethyl acrylate 

The addition of 9 to ethyl acrylate gave the adduct 10 in 55% yield after hydrogen abstraction7 The 
by-product 11 is formed in 45% yield by hydrogen addition to 9.14 The adduct 14 is yielded under the same 
conditions in 27%.7*15 Again 6% of the hydrogen substituted product 15 was found.16 In both cases only 
one diastereoisomer was isolated. The configuration determined by NOE experiments is (2K5R) for 10 and 
(2$5S) for 14.17 

Saponification of 10 leads to the hydroxydicarboxylic acid 15. By treatment with acid we obtained 
the corresponding lactone 16 in 90% yield (ee = 97.6%)lg of which the optical totation is almost identical 
with (It)-16 described by PARTRIDGE. 19 Consequently, the absolute configuration of 10 must be (5R). In 

this manner we determined the absolute configuration of 10 and therefore the facial selectivity of 8. 

KOH, EtOH 

2 h, 20 “C 

0 +;OH- 
H&&OH 
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(2R)-15 - 

w 
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3 

(5R)-16 

Scheme 3. Formation of (SR)-y-butyrolactone-ly-carboxylic acid 16 
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